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Abstract:

This paper addresses the crucial task of enhancing the reconstruction quality of
dynamic scenes by leveraging UAVs equipped with high-definition cameras. De-
spite their proven efficacy, deploying such systems for human-operated filming
necessitates careful consideration of collision avoidance with the environment and
other drones, ensuring human safety. We propose an adaptive viewpoint selection
approach to collect distributed pixel-level metrics like Pixel-Per-Area (PPA) and
account for the diversity of seen pixels. The methodology involves converting the
scene representation into a low-level geometric mesh, enabling reasoning for each
pixel. We formulate a Markov Decision Process (MDP) model using Q-learning
and SARSA, offering scalability and safer camera pose estimates for UAV navi-
gation. We conduct deeper studies to explore the performance of effective robot
learning algorithms against value-iteration policies, and provide explanation of the
intuitive advantages and limitations of these methods in terms of generalizability
and effectiveness in human-operated environments.

1 Introduction

The increased availability of cameras on UAVs has invoked deep interest in its use for various appli-
cations such as search and rescue, environmental monitoring, 3D reconstruction [1, 2, 3, 4]. In such
applications, it is critical for any UAV to maximize its coverage over the environment, and ensure
optimal coverage of dynamic targets. We formulate the problem as a multi-agent multi-target cov-
erage problem, where the objective is to calculate a collision-free path for the agents that maximize
pixel coverage of dynamically moving targets.

While one can use value iteration, it requires known MDP of the environment. This is a non-ideal
candidate for large-scale multi-UAV planning and dynamic target tracking given that the policy
extraction requires a known transition function, which is oftten unkown in real-world scenarios.
This prompts us to investigate the use of sampling based Q-value iteration functions, namely Q-
learning and SARSA. By using a sampling-based method, we hope to scale to larger and unkown
scenes effectively.

2 Related Work

Our work builds upon recent work in multi-view drone planning and dynamic target tracking.

[3] proposed a system to capture multiple views of a single actor for human pose reconstruction,
by using a preconfigured actor-centric formation.[5] proposed a spherical discretization of the robot
state space, allowing for rapid greedy single-robot planning, which could generate joint-plans in a
sequential manner. To extend this to a multi-actor space, [? ] proposed allowing robots to plan
over the full-environment, but did not consider inter-robot collisions. [6] proposes to learn control
policies for actively classifying moving targets, building upon [7],[8].



A key challenge is the intractable nature of multi-robot perception and planning problems, which are
often solved through greedy sub-modular optimization, guaranteeing a lower bound of half of the
optimal solution in polynmial time. Subsequently, [9] removed these limitations by implementing a
planner for optimize camera viewpoints for multi-drone multi-actor scenarios, building upon prior
work from [10]and [? ]. In particular, [9] develops upon perception objectives proposed by [10] on
using pixel densities (PPA) as a reconstruction quality proxy and plan views by maximizing the PPA
of the actor’s geometrical shape.

3 Methodology
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Figure 1: Problem Formulation: We aim to calculate joint paths for a group of agents to maximize
pixel coverage of the dnyamic targets
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Our aim is to jointly plan collision-free control input sequences for a team of agents for maximizing
the reconstruction coverage of a dynamically moving agents in a particular environment.

Particularly, we have r agents, denoted by {1,...,N,}, and a set of dynamic targets 7 =
{1,...,N¢}. Each of these targets have faces 7; = {1,...,N; s} where j € T and we repre-
sent the set of all faces for all targets as F = {Fq, ..., Fu, }- Furthermore, we associate these faces
with a set of pixel coverage by agents = {111, ..., }» Where i € N,., j € N, and k € N; ;.

The movement of these agents is synchronized with a common global clock that starts at ¢ = 0, and
we represent this movement in a workspace as a finite graph G = (V,£). Here, V consists of all
possible locations for the i-th agent at time ¢ (v € V), while & represents the set of actions (e} € &)
taken by the i-th agent at discrete times ¢t € 0,...,7, where 7 belongs to the set of robots, . Each
action ei has an associated reward, denoted as reward(ei), which is a non-zero vector in R+M with
M dimensions. £‘(vi,v}) defines a path linking vertices v} and v through a sequence of vertices
(vi, s, ...,v}) € G. Furthermore, ¢* (£ (v}, v})) is the M-dimensional reward vector associated with
the path £ (v}, v}), which is calculated by summation of the reward vectors from all edges present
in the path, and is expressed as g* (£ (vi, v})) = 22,y ;1 (v}, 054q).

We define v, v; € V as the initial location of the i-th agent and its corresponding destination. Then,
a path from v, to v for agent ¢ is represented by as £, and the joint path (solution) for all agents
is denoted by ¢ = (£1, €2, ..., €M), The solution’s cost vectors is then calculated as the sum of all
agents’ individual path costs g(€) = S, g*(€7).

For each agent, the state transitions is specified as a constant velocity motion model:
i1 = fil@ig, Uit)

Our objective is then to maximise the pixel coverage of the dynamic targets, which is calculated by
the sum of pixel coverage of all agents’ faces J.o, () = vat (> Jeou(Fji))-



To solve this objective function we have the reward function defined by the number of pixels covered
by a render, using this reward function we create an MDP model for each robots and solve using the
algorithms 1 and 2, that is of SARSA and Q-learning.

Q-Learning is employed to learn Q-values for state-action pairs, enabling agents to autonomously
plan optimal paths. The algorithm operates in an environment defined by states (.5), actions (A4), a
transition model (P), and a reward function (R). Hyperparameters, including the learning rate («),
discount factor (y), and exploration rate (¢), are set to control the learning process.

The SARSA algorithm complements our approach by learning Q-values for state-action pairs in a
sample-based variant of Q-value iteration. Similar to Q-Learning, SARSA operates in an environ-
ment defined by states, actions, a transition model, and a reward function. Hyperparameters are set
to ensure effective learning.

Algorithm 2: Q-Learning Algorithm 4: SARSA
Data: Environment with states S, actions A, transition model £, reward function i
pair, Q(s, a)

Data: Environment with states S, actions A, transition model /”, reward function R
Result: Learned Q-values for each state-action pair, (s, a)
1 Initialize ()(s, a) arbitrarily forall s € Sand a € A;
2 Set hyperparameters: learning rate v, discount factor ~, exploration rate €;
3 for each episode do
4 Initialize the state s;
while not terminal state is reached do
6 Choose action @ using an exploration-exploitation strategy, e.g.. e-greedy:
7 T_ukc action a, observe reward  and next state s'; Che an exploration-exploitation strategy, ¢
8 Update Q-value: Q(s,a) = (1 —a)-Q(s,a) +a - (r+7 - max, Q(s",a")); Update Q-value: Q(s,a) « (1 a) - Q(s,a) + a- (r+7-Q
2 Update the current state: 5 < s'; 0 Update the current state and action: s ¢ s/, a ¢ a's
10 end 1 end
1 end 1 end

7. exploration rate ¢;

ing an exploration-cxploitation strategy, c.g., c-groedy;
is reached do

Tak rd r and next state s';

e-greedy;

Figure 2: Psuedocode of Q-Learning and SARSA algorithms, as taken from [11]

4 Experiments

In our experimental setup, we employed a system equipped with a NVIDIA GeForce RTX 3090
Ti GPU to facilitate the training and evaluation of our reinforcement learning models. For the Q-
learning approach, we utilized standard parameters, including a learning rate of 0.001, a discount
factor (gamma) of 0.99, and an exploration-exploitation trade-off represented by the epsilon-greedy
strategy with an initial epsilon value of 1.0 and a decay rate of 0.995 per episode. The neural network
architecture employed for Q-learning consisted of two fully connected layers with ReL.U activation
functions. Additionally, we implemented experience replay with a buffer size of 10,000 samples to
enhance learning stability.

Similarly, for the SARSA solver, we utilized comparable parameters to ensure a fair comparison.
The SARSA algorithm incorporated a learning rate of 0.001, a discount factor of 0.99, and an
epsilon-greedy strategy with an initial epsilon value of 1.0, decaying at a rate of 0.995 per episode.
The neural network architecture for SARSA followed the same configuration as the Q-learning
model. Both Q-learning and SARSA were subjected to a maximum of 1,000 episodes for training,
with each episode representing interactions within the environment. These standardized parameters
aimed to establish a consistent and comparable experimental framework for evaluating the proposed
adaptive viewpoint selection system.

5 Results

The experimental evaluation compared Value Iteration, SARSA, and Q-Learning in a corridor en-
vironment. Figure 3 showcased qualitative visualizations of the pixel coverage by Value Iteration(
modeled by a defined transition function, SARSA and Q-Learning(both of which demonstrated Q
function learning without defined transitions). In Figure 4, we provide quantitative results of these
3 methods. These results highlight a further need for hyperparameter tuning in SARSA and Q-
Learning to improve against the state-of-art value Iteration’s advantage in smaller environments, as
well as testing in large-scale scenes to demonstrate scalability.
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Figure 3: Performance Comparison in a Corridor Environment: The top row depicts results from
Value Iteration, the middle row illustrates outcomes obtained using the SARSA algorithm, and the
bottom row exhibits results achieved through Q-Learning. In the corridor environment, the left robot
represents Robot 1, and the right robot is Robot 2. The side black panel shows renders from Robot
2 at the top and Robot 1 at the bottom. Square boxes represent two targets from a top view, and at
T=0, their corresponding trajectories are visible with black and red lines. The results highlight that
with a well-defined transition function, the robots exhibit distributed pixel coverage. In contrast,
results from SARSA and Q-Learning, without explicitly defined transition functions, showcase the
direct learning of the Q function.

6 Conclusion and Future Work

In conclusion, this paper introduced an adaptive viewpoint selection approach for enhancing the re-
construction quality of dynamic scenes using UAVs equipped with high-definition cameras. The pro-
posed methodology, employing Q-learning and SARSA within a Markov Decision Process frame-
work, demonstrated its effectiveness in achieving distributed pixel coverage. Comparative analy-
ses with Value Iteration highlighted the adaptability of the reinforcement learning solvers. While
exhibiting promising results, further refinement through hyperparameter tuning is acknowledged,
particularly for Q-Learning and SARSA. Future work will involve extensive testing on diverse and
larger scenes, affirming the method’s potential for human-operated filming in dynamic and challeng-
ing environments.
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Figure 4: Performance Comparison of Reinforcement Learning Solvers: The top-left figure displays
maximum rewards achieved with the Value Iteration solver. However, Q-Learning and SARSA algo-
rithms exhibit the need for hyperparameter tuning, particularly in terms of decreasing learning rates
and increasing episodes, as seen in the top-right and bottom-left figures. Notably, the performance
benchmarks in larger grids for SARSA and Q-Learning are expected to be intuitively better, as Value
Iteration would require a transition function that becomes impractical in real-world scenarios with
larger environments.
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